Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

Superstructure of α -phase potassium nitrate

Gunadi Adiwidjaja and Dieter Pohl*

Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany Correspondence e-mail: mi2a002@mineralogie.uni-hamburg.de

Received 11 July 2003 Accepted 3 November 2003

Online 30 November 2003

The structure of potassium nitrate, KNO₃, has been redetermined at room temperature. The compound surprisingly shows a $2 \times 2 \times 1$ superstructure and crystallizes in space group $Cmc2_1$. This result contrasts with that found in former investigations, which gave the supergroup Pmcn, neglecting the superstructure. The improved results are due to the employment of a CCD area detector.

Comment

Potassium nitrate is known to be both a mineral (niter) and an inexpansive chemical compound. On heating, it undergoes two phase transitions at atmospheric pressure, the first from the α phase to the β phase and the second from the β phase to the melt. These transitions are widely used to calibrate differential thermal analysis (DTA) devices (Barshad, 1952; Greis et al., 1985). The crystal structure of the α phase was determined by Edwards (1931), and redetermined by Nimmo & Lucas (1973) and Holden & Dickinson (1975) using neutrons and X-rays, respectively. All these authors found an aragonite-type structure, with space group Pmnc.

For many years, we have used potassium nitrate to calibrate a DTA apparatus and to teach graduate students phase transitions observed by DTA and X-ray powder diffraction. Then, in addition, we advantageously used the same compound to teach structure determination. To study the structure, we employed a Weissenberg camera and an Enraf-Nonius CAD-4 diffractometer. The Weissenberg photographs never showed any sign of superstructure, and therefore the known space group, Pmnc, was confirmed. However, the situation was completely different when we used a Nonius KappaCCD diffractometer. In the latter case, space group $Cmc2_1$ was determined, with doubled crystallographic a_0 and b_0 axes. All corresponding reflections with odd h or k indices have weak intensities, thus showing a $2 \times 2 \times 1$ superstructure. On the basis of the criterion $I > 2\sigma(I)$, 1069 reflections are classified as significant, of which 1012 belong to the sublattice and 48 to

Figure 1

A view along [001] of the α -KNO₃ superstructure, showing an asymmetric unit with N-O bonds. The corners of the cell are indicated with dots. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, y, z; (ii) 1 - x, y, z.]

the superlattice, including 17 Friedel pairs. The intensity of the strongest superlattice reflection is less than 2% of that of the strongest sublattice reflection.

The space group of the superstructure $(Cmc2_1)$ is a subgroup of that given in the literature (*Pmcn*) for α -KNO₃. As can be seen from the International Tables for X-ray Crystallography (1983, Vol. A), both space groups are connected via the minimal supergroup (maximal subgroup) $Pmc2_1$ ($Cmc2_1 < Pmc2_1 < Pmcn$). According to the work of Lima-de-Faria et al. (1990), the superstructure of α -KNO₃ and the formerly described aragonite-type structure of this compound are homeotypic. Regarding the geometric properties, the superstructure differs little from the aragonite-type structure. However, the superstructure has a lowered symmetry and hence a higher number of crystallographically independent atoms in the asymmetric unit. While the true aragonite-type structure has one unique K atom and one unique N atom, each of them sitting on a mirror plane, the superstructure contains three unique atoms of both potassium and nitrogen. Each of these elements occupies two unique sites on a mirror plane and one at a general position, as depicted in Fig. 1.

There are seven unique O atoms in the superstructure of α -KNO₃. All seven are bonded to N atoms, forming nitrate ions, of which three are unique (see Table 1 for selected bond lengths and angles). In each nitrate ion, the N atom deviates by 2 s.u. or less from the plane through the O atoms. Each of the three unique potassium ions is surrounded by nine O atoms from six nitrate ions, thereby building an irregular coordination polyhedron.

A face-indexing analytical absorption correction was applied, based on a crystal bound by ten faces, *viz*. $(0\overline{1}1)$, $(01\overline{1}), (010), (0\overline{1}0), (110), (\overline{11}0), (0\overline{11}), (\overline{1}11), (\overline{1}10)$ and $(1\overline{1}0), (\overline{1}10), (\overline{1}$ with face-to-centre distances of 0.11, 0.06, 0.16, 0.17, 0.13, 0.11, 0.12, 0.15, 0.10 and 0.17 mm, respectively. The crystal neither looks orthorhombic nor resembles a sphere, thus making absorption correction extremely difficult.

inorganic compounds

Experimental

Crystal data

KNO₃ $M_r = 101.11$ Orthorhombic, Cmc21 a = 10.825 (6) Å b = 18.351 (10) Åc = 6.435(3) Å $V = 1278.3 (12) \text{ Å}^3$ Z = 16 $D_x = 2.101 \text{ Mg m}^{-3}$

Data collection

Nonius KappaCCD diffractometer	3857 independent reflection
φ and ω scans	1069 reflections with $I > 2$
Absorption correction: analytical	$\theta_{\rm max} = 40.2^{\circ}$
face-indexing (COLLECT;	$h = -19 \rightarrow 19$
Nonius, 1999)	$k = -33 \rightarrow 33$
$T_{\min} = 0.65, \ T_{\max} = 0.78$	$l = -11 \rightarrow 11$
3857 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ wR(F²) = 0.160 S = 1.043857 reflections 101 parameters $w = 1/[\sigma^2(F_o^2) + (0.0308P)^2]$ + 2.4843P] where $P = (F_{0}^{2} + 2F_{c}^{2})/3$ $\theta = 1.0-40.3^{\circ}$ $\mu = 1.46 \text{ mm}^{-1}$ T = 293 (2) KIrregular, colourless $0.33 \times 0.25 \times 0.17 \text{ mm}$ ons

Cell parameters from 2170

Mo $K\alpha$ radiation

reflections

 $2\sigma(I)$

 $(\Delta/\sigma)_{\rm max} = 0.036$ $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0097 (7) Absolute structure: Flack (1983), 1632 Friedel pairs Flack parameter = 0.1 (5)

In order to obtain the maximum number of superstructure reflections, we chose a high angle, $\theta_{\rm max}$, of measured reflections. Therefore, and because of the general weakness of the superstructure reflections, we unavoidably obtained many reflections below the $2\sigma(I)$ threshold, making the refinement a little clumsy. Moreover, the pseudosymmetries imposed by the substructure result in strong correlations of several parameters. Additional correlations are possibly introduced via absorption-correction errors (see above). As a result of the correlations, the convergence of the refinement is poor. The use of damping parameters was necessary in the last cycles of refinement, and a final cycle with no damping was added. Because of the presence of a pseudo-centre of symmetry, the absolute structure could not be determined. Simple twinning models based on primitive monoclinic lattices neither resulted in a better convergence of the refinement nor removed the pseudo-centre of symmetry. However, if the transformation of potassium nitrate from the trigonal ferro-

Table 1

Selected geometric parameters (Å, °).

N1-O1	1.241 (12)	N2-O4	1.262 (6)
N1-O3	1.255 (6)	N3-O6	1.235 (8)
N1-O3 ⁱ	1.255 (6)	N3-O5	1.237 (8)
N2-O2	1.250 (12)	N3-O7	1.253 (9)
N2-O4 ⁱⁱ	1.262 (6)		
O1-N1-O3	120.4 (5)	$O4^{ii}$ -N2-O4	120.4 (10)
O1-N1-O3 ⁱ	120.4 (5)	O6-N3-O5	119.8 (7)
O3-N1-O3 ⁱ	119.2 (10)	O6-N3-O7	121.5 (6)
$O2-N2-O4^{ii}$	119.8 (5)	O5-N3-O7	118.6 (6)
O2-N2-O4	119.8 (5)		
	. ,		

Symmetry codes: (i) -x, y, z; (ii) 1 - x, y, z.

electric high-temperature γ phase to the room-temperature α phase is led by symmetry then, in the α phase, a C-centred cell lacking a centre of symmetry is desired. Therefore, the pseudosymmetries may be true features of the α -phase structure.

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1035). Services for accessing these data are described at the back of the journal.

References

- Barshad, I. (1952). Am. Mineral. 37, 667-694.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Edwards, D. A. (1931). Z. Kristallogr. 80, 154-163.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881
- Greis, O., Bahamdan, K. M. & Uwais, B. M. (1985). Thermochim. Acta, 86, 343-350
- Holden, J. R. & Dickinson, C. W. (1975). J. Phys. Chem. 79, 249-256.
- Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1-11.
- Nimmo, J. K. & Lucas, B. W. (1973). Solid State Phys. 6, 201-211.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.